Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clean Technol Environ Policy ; 25(4): 1259-1272, 2023.
Article in English | MEDLINE | ID: covidwho-2293821

ABSTRACT

Atmospheric nitrogen oxides ( NO x = NO + NO 2 ) are key pollutants and short-lived climate forcers contributing to acid rain, photochemical smog, aerosol formation and climate change. Exposure to nitrogen dioxide ( NO 2 ) emitted mainly from transportation, causes adverse health effects associated with respiratory illnesses and increased mortality even at low concentration. Application of titanium dioxide ( TiO 2 )-based photocatalysis in urban environment is a new air cleaning solution, activated by sunlight and water vapour to produce OH radicals, able to remove NO x and other pollutants from the planetary boundary layer. This study is a large-scale evaluation of NO x removal efficiency at a near-road environment with applied photocatalytic NOxOFF™ technology on an urban road west of Copenhagen, thus supporting local municipality in meeting their clean-air Agenda 2030. The photocatalytic NOxOFF™ granulate containing TiO 2 nanoparticles was applied on an asphalt road in July 2020 and ambient NO x was measured during a six-month monitoring campaign. It is the first NO x monitoring campaign carried out at this road and specific efforts have been devoted to evaluate the reduction in ambient NO x levels with NOxOFF™-treated asphalt. Several methods were used to evaluate the photocatalytic effect, taking into account analysis limitations such as the short reference period prior to application and the highly uncertain measurement period during which SARS-CoV-2 lockdown measures impacted air quality. There was no statistically significant difference in NO x concentrations between the reference period and the photocatalytic active period and NO removal efficiency resulted in - 0.17 (± 1.27). An upper limit removal of 17.5% NO x was estimated using a kinetic tunnel model. While NO 2 comparison with COPERT V street traffic model projection was roughly estimated to decrease by 39% (± 38%), although this estimate is subject to high uncertainty. The observed annual mean NO 2 concentration complies with Frederiksberg clean-air Agenda 2030 and air quality standards. Graphical abstract: A graphical abstract illustrating the air cleaning properties of TiO 2 -based photocatalytic-treated asphalt.

2.
Environ Sci Atmos ; 1(5): 228-240, 2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1345620

ABSTRACT

The spread of COVID-19 has posed serious challenges for the global communities. To reduce the circulation of the infection, governmental bodies have imposed different lockdown measures at various levels of complexity and duration. As a result, a substantial reduction in mobility might have important, yet unknown, implications for air quality. In this study, we applied the Comprehensive Air quality Model with eXtensions (CAMx) to investigate potential changes in air quality and its chemical composition over northern Italy and Switzerland during periods when lockdown measures were enforced. Our results indicated that lockdown measures reduced nitrogen dioxide (NO2) air concentrations by up to 46% and 25% in the Po Valley and Swiss Plateau regions, respectively, whereas fine particulate matter (PM2.5) air concentrations were reduced only by up to 10% and 6%. This highlights the importance of other emission categories other than traffic for the total PM2.5 levels. The analysis of the PM2.5 components indicated that elemental carbon (EC) and particulate nitrate (NO3 -) were the species most affected by the lockdown measures, whereas a mild increase in the secondary organic aerosol (SOA) concentrations occurred in the Po Valley, and specifically over the metropolitan area of Milan. Our results indicated that an increase in the oxidation capacity of the atmosphere, i.e. in the ˙OH and ˙NO3 radicals, was mainly responsible for the mild increase in SOA concentrations.

3.
Environ Sci Atmos ; 1(5): 214-227, 2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1345619

ABSTRACT

The lockdown measures implemented to curb the COVID-19 epidemic in Italy reduced human mobility dramatically, which resulted in a marked decline in traffic intensity. In this study, we present the effect of lockdown measures on several air pollutants, particle number size distribution as well as on regional new particle formation (NPF) frequency in the Po Valley (northern Italy). The results show that during the lockdown period, concentrations of nitrogen dioxide (NO2), nitric oxide (NO), benzene (C6H6), and toluene (C7H8) decreased, while ozone (O3) concentrations mildly increased as compared to the corresponding period in 2016-2019. Unlike gaseous pollutants, particulate matter mass concentrations (PM2.5 and PM10) showed no significant changes. The impact of lockdown measures on particle number size distributions were also quite limited. During the lockdown period, the number concentrations of 10-25 and 25-50 nm primary particles were reduced by 66% and 34%, respectively, at the regional background site (Ispra) but surprisingly there was no difference during and after lockdown at the urban background site (Modena). Conversely, the NPF frequency was exceptionally high, 70%, in Modena during the lockdown as compared to values (22-26%) observed for the same period in 2006 and 2009, while NPF frequency in Ispra only slightly increased compared to the same period in 2016-2019. The particle growth rates, however, were slightly lower during the lockdown at both sites compared to other periods. The study shows that a drastic decrease in traffic had little influence on particulate pollution levels in the Po Valley, suggesting that other sources and processes also have a prominent impact on particle number and particulate matter mass concentration in this region.

SELECTION OF CITATIONS
SEARCH DETAIL